

Automatic learning of functional summary statistics for approximate Bayesian computation

Florence Forbes

Statify team, INRIA Grenoble, France Florence.Forbes@inria.fr

Joint work with

Hien Duy Nguyen (University of Queensland), Trung Tin Nguyen (Université Caen Normandie) Julyan Arbel (Inria Grenoble Rhône-Alpes)

Florence Forbes

- Approximate Bayesian computation (ABC)
- Semi-automatic ABC
- Surrogate posteriors as functional summaries
- GLLiM-ABC procedures
- Theoretical properties
- Illustration
- Conclusion

A data generating model

Prior: $\pi(\theta)$ Likelihood: $f_{\theta}(\mathbf{z})$ $\longrightarrow \mathbf{z} = \{z_1, \dots, z_d\}$ can be simulated from f_{θ}

Goal: Estimation of θ given some observed $\mathbf{y} = \{y_1, \dots, y_d\}$

Posterior: $\pi(\boldsymbol{\theta}|\mathbf{y}) \propto \pi(\boldsymbol{\theta}) f_{\boldsymbol{\theta}}(\mathbf{y})$

What if f_{θ} is not tractable, not available, too costly?

Approximate Bayesian Computation (ABC)

Goal: get a sample of θ values from $\pi(\cdot|\mathbf{y})$

Simulate M i.i.d. $(\boldsymbol{\theta}_m, \mathbf{z}_m)$ for $m = 1 \dots M$

 $\boldsymbol{\theta}_m \sim \pi(\boldsymbol{\theta})$ $\mathbf{z}_m \sim f_{\boldsymbol{\theta}_m}$

If $D(\mathbf{y}, \mathbf{z}_m) < \epsilon$ then keep $\boldsymbol{\theta}_m$ [Rejection ABC]

where $D(\mathbf{y}, \mathbf{z}_m) = ||\mathbf{y} - \mathbf{z}_m||$ or $D(\mathbf{y}, \mathbf{z}_m) = ||\mathbf{s}(\mathbf{y}) - \mathbf{s}(\mathbf{z}_m)||$

\mathbf{s} is a summary statistic

 \longrightarrow Which choice for D? for s? for ϵ ?

For continuous data $||\mathbf{y} - \mathbf{z}_m|| < \epsilon$ is inefficient in high dimension

Two main types of approaches

1. Summary-based procedures: effort on s, D "standard" norm $||s(y) - s(z_m)||$ has a smaller variance

- Pros: Dimension reduction, smaller variance
- Cons: Loss of information, arbitrary s

Difficult to select a summary statistic in general

 \rightarrow Semi-automatic ABC [Fearnhead & Prangle 2012] : preliminary regression step Requires *d* small, not for *i.i.d.* samples unless summarized, not for large time series \rightarrow OK for one vector of observations

2. Data discrepancy-based procedures: effort on D, no need for s

 \rightarrow Replace $||\mathbf{y} - \mathbf{z}_m||$ by a distance between samples considered as empirical distributions (instead of vectors)

$$\mathbf{z}_m = d^{-1} \sum_{i=1}^d \mathrm{I\!I}_{z_i} \quad \text{and} \quad \mathbf{y} = d^{-1} \sum_{i=1}^d \mathrm{I\!I}_{y_i}$$

- p-order Wasserstein distance [Bernton & al 2019]
- Kullback-Leibler (1 nearest neighbor density estimate) [Jiang et al 2018]
- Maximum Mean Discrepancy [Park et al 2016]
- Classification accuracy [Gutmann et al 2018]
- Energy distance: [Nguyen & al 2020]
- Integral probability semimetrics: [Legramanti & al 2022]
- Pros: ABC methods that do not require summary statistics
- Cons: Requires moderately large (*i.i.d.*) samples, not always available in inverse problems

\Rightarrow 3. An approach that can be applied in both cases

Semi-automatic ABC [Fearnhead & Prangle 2012]

The posterior mean is the optimal (quadratic loss) summary : $\mathbf{s}(\mathbf{z}) = \mathbb{E}[\boldsymbol{\theta}|\mathbf{z}]$ \rightarrow Use a preliminary linear regression step to learn an approximation of $\mathbb{E}[\boldsymbol{\theta}|\mathbf{z}]$ as a function of \mathbf{z} from $\mathcal{D}_N = \{(\boldsymbol{\theta}_n, \mathbf{z}_n), n = 1 : N\}$ simulated from the true joint distribution

- Variant 1: replace linear regression by neural networks ... [Jiang et al 2017, Wiqvist et al 2019]
- Variant 2: add extra higher order moments (eg variances) in s

A natural idea mentioned (not implemented) in [Jiang et al 2017]

- \rightarrow Requires a procedure able to provide posterior moments at low cost
- Variant 3: replace s(z) by an approximation (surrogate) of $\pi(\theta|z)$

Moments, point estimates replaced by functional summaries Requires

- → a learning procedure able to provide tractable approximate posteriors at low cost: Gaussian Locally Linear Mapping [Deleforge et al. 2015]
- \rightarrow a tractable metric between distributions to compare them

Surrogate posteriors as mixtures of affine Gaussian experts

The Gaussian Locally Linear mapping (GLLiM) model : an inverse regression approach that

- aims at capturing the link between ${f z}$ and ${m heta}$ with a mixture of K affine components
- provides for each z a posterior within a parametric family $\{p_G(\theta|z;\phi), \phi \in \Phi\}$

$$\phi = \{\pi_k, \mathbf{c}_k, \mathbf{\Gamma}_k, \mathbf{A}_k, \mathbf{b}_k, \mathbf{\Sigma}_k\}_{k=1}^K \quad \text{and} \quad p_G(\boldsymbol{\theta} | \mathbf{z}; \boldsymbol{\phi}) = \sum_{k=1}^K \eta_k(\mathbf{z}) \, \mathcal{N}(\boldsymbol{\theta}; \mathbf{A}_k \mathbf{z} + \mathbf{b}_k, \mathbf{\Sigma}_k)$$

mixture components: $\mathcal{N}(.; oldsymbol{\mu}, oldsymbol{\Sigma})$ Gaussian pdf with mean $oldsymbol{\mu}$, covariance $oldsymbol{\Sigma}$

mixture weights:
$$\eta_k(\mathbf{z}) = \frac{\pi_k \mathcal{N}(\mathbf{z}; \mathbf{c}_k, \mathbf{\Gamma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{z}; \mathbf{c}_j, \mathbf{\Gamma}_j)}$$

Florence Forbes

Fit a GLLiM model to a learning set $\mathcal{D}_N = \{(\theta_n, \mathbf{z}_n), n = 1 : N\}$ simulated from the true joint

distribution: parameters ϕ learned with an EM algorithm $\phi_{K,N}^* = \{\pi_k^*, \mathbf{c}_k^*, \mathbf{\Gamma}_k^*, \mathbf{A}_k^*, \mathbf{b}_k^*, \mathbf{\Sigma}_{kJk=1}^{*}\}$

Extended semi-automatic ABC: GLLiM-ABC

GLLiM surrogate posteriors for each \mathbf{z} , $p_G(\boldsymbol{\theta} \mid \mathbf{z}; \boldsymbol{\phi}_{K,N}^*)$ with $\boldsymbol{\phi}_{K,N}^*$ independent of \mathbf{z}

$$p_G(\boldsymbol{\theta}|\mathbf{z};\boldsymbol{\phi}_{K,N}^*) = \sum_{k=1}^{K} \eta_k^*(\mathbf{z}) \, \mathcal{N}(\boldsymbol{\theta}; \mathbf{A}_k^* \mathbf{z} + \mathbf{b}_k^*, \boldsymbol{\Sigma}_k^*)$$

- Variant 1: approximate $\mathbb{E}[\boldsymbol{\theta}|\mathbf{z}]$ with $\mathbb{E}_{G}[\boldsymbol{\theta}|\mathbf{z}; \boldsymbol{\phi}_{K,N}^{*}] = \sum_{k=1}^{K} \eta_{k}^{*}(\mathbf{z})(\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*})$
- Variant 2: add the log posterior variances from

$$\begin{aligned} \mathsf{Var}_{G}[\boldsymbol{\theta}|\mathbf{z};\boldsymbol{\phi}_{K,N}^{*}] = & \sum_{k=1}^{K} \eta_{k}^{*}(\mathbf{z}) \left[\boldsymbol{\Sigma}_{k}^{*} + (\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*})(\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*})^{\top} \right] \\ & - (\sum_{k=1}^{K} \eta_{k}^{*}(\mathbf{z})(\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*}))(\sum_{k=1}^{K} \eta_{k}^{*}(\mathbf{z})(\mathbf{A}_{k}^{*}\mathbf{z} + \mathbf{b}_{k}^{*}))^{\top} \end{aligned}$$

• Variant 3: use full $p_G(\theta \mid \mathbf{z}; \phi^*_{K,N}) \rightarrow$ requires a metric for Gaussian mixtures

 \rightarrow Mixture Wasserstein distance (MW2) [Delon & Desolneux 2020] \rightarrow L_2 distance

- 1: Inverse operator learning. Apply GLLiM on \mathcal{D}_N to get for any $\mathbf{z} \ p_G(\boldsymbol{\theta} \mid \mathbf{z}, \boldsymbol{\phi}^*_{K,N})$ as a first approximation of the true posterior $\pi(\boldsymbol{\theta} \mid \mathbf{z})$
- 2: Distances computation. For another simulated set $\mathcal{E}_M = \{(\theta_m, \mathbf{z}_m), m = 1: M\}$ and a given observed y, do one of the following for each m:

Vector summary statistics:

GLLiM-E-ABC: Compute summary $s_1(\mathbf{z}_m) = \mathbb{E}_G[\boldsymbol{\theta} \mid \mathbf{z}_m; \boldsymbol{\phi}_{K,N}^*]$ GLLiM-EV-ABC: Compute $s_1(\mathbf{z}_m)$ and $s_2(\mathbf{z}_m)$ the GLLiM posterior log-variances Compute standard distances between summary statistics

Functional summary statistics:

 $\begin{array}{l} \textbf{GLLiM-MW2-ABC: Compute } MW_2(p_G(\cdot|\mathbf{z}_m; \phi_{K,N}^*), p_G(\cdot|\mathbf{y}; \phi_{K,N}^*)) \\ \textbf{GLLiM-L2-ABC: Compute } L_2(p_G(\cdot|\mathbf{z}_m; \phi_{K,N}^*), p_G(\cdot|\mathbf{y}; \phi_{K,N}^*)) \end{array}$

- 3: Sample selection. Select the θ_m values that correspond to distances under an ϵ threshold (rejection ABC) or apply some standard ABC procedure
- 4: Sample use. Use produced θ values to get a closer approximation of $\pi(\theta|\mathbf{y})$

Theoretical properties

• A new quasi-posterior formulation: $q_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}) \propto \int_{\mathcal{Y}} \mathbb{I}_{\{D(\pi(\cdot|\mathbf{y}), \pi(\cdot|\mathbf{z})) \leq \epsilon\}} \pi(\boldsymbol{\theta}|\mathbf{z}) \pi(\mathbf{z}) d\mathbf{z}$ vs. Standard form: $q_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}) \propto \pi(\boldsymbol{\theta}) \int_{\mathcal{Y}} \mathbb{I}_{\{D(\mathbf{s}(\mathbf{y}), \mathbf{s}(\mathbf{z})) \leq \epsilon\}} f_{\boldsymbol{\theta}}(\mathbf{z}) d\mathbf{z}$

Result [FF et al, Theorem 1]: $q_{\epsilon}(\cdot \mid \mathbf{y}) \to \pi(\cdot \mid \mathbf{y})$ in total variation when $\epsilon \to 0$

In practice: replace the unknown $\pi(\cdot|\mathbf{y})$ by a tractable approximation

• ABC quasi-posterior with surrogate posteriors $\{p^{K,N}(\cdot|\mathbf{y}): \mathbf{y} \in \mathcal{Y}, K \in \mathbb{N}, N \in \mathbb{N}\}$

$$q_{\epsilon}^{K,N}\left(\boldsymbol{\theta} \mid \mathbf{y}\right) \propto \pi(\boldsymbol{\theta}) \; \int_{\mathcal{Y}} \mathbb{1}_{\left\{D\left(p^{K,N}(\cdot \mid \mathbf{y}), p^{K,N}(\cdot \mid \mathbf{z})\right) \leq \epsilon\right\}} \; f_{\boldsymbol{\theta}}(\mathbf{z}) \; d\mathbf{z}$$

Result [FF et al, Theorem 2] : $\epsilon \rightarrow 0, \; K, N \rightarrow \infty$

The Hellinger distance $D_{H}\left(q_{\epsilon}^{K,N}\left(\cdot\mid\mathbf{y}
ight),\pi\left(\cdot\mid\mathbf{y}
ight)
ight)$ converges to 0

- in some measure $\lambda,$ with respect to $\mathbf{y}\in\mathcal{Y}$
- in probability, with respect to the sample $\{(\boldsymbol{\theta}_n, \mathbf{y}_n), n=1:N\}$

Restrictions:

- $p^{K,N}$ cannot be replaced by GLLiM $p_G^{K,N}$
- Truncated Gaussian distributions with constrained parameters can meet the restrictions

Florence Forbes

11/20

Illustrations

i.i.d. samples:

• Moving average of order 2: one 150D series cut into 5 pieces, R = 5, d = 30, $\ell = 2$

Examples with multimodal posteriors: 10D observation (a single y, e.g. summaries)

- Multiple hyperboloid example ($\ell = 2$ parameters)
- Real inverse problem in planetary science ($\ell = 4$ parameters)

Comparison of different (rejection and SMC ABC) procedures :

- GLLiM-E-ABC and GLLiM-EV-ABC (abc package [Csillery et al 2012])
- GLLiM-L2-ABC, GLLiM-MW2-ABC (transport package [Schuhmacher et al 2020])
- Semi-automatic ABC (abctools R package [Nunes and Prangle, 2015])
- Wasserstein ABC and SMC-ABC (winference R package [Bernton et al, 2020])

Setting:

- GLLiM learning $N = 10^5$, K Gaussians (BIC) (xLLiM package [Perthame et al 2017])
- Rejection and SMC ABC: simulations $M=10^5$ or 10^6 , ϵ is a distance quantile (e.g. 0.1%)

Moving average of order 2: $y_t = z_t + \theta_1 z_{t-1} + \theta_2 z_{t-2}, t = 1 \dots 150$

Rejection ABC: ϵ is set to the 0.1% quantile leading to selected samples of size 100

SMC-ABC: 2048 particles, 100 best distances selected

GLLiM: K = 20 (BIC), R = 1, d = 150, $\ell = 2$, with bloc diagonal covariances, 5 blocs 30×30

MSE over 100 simulated observations with the same true parameters $heta_1=0.6$ and $heta_2=0.2$

Procedure	mean (θ_1)	$mean(heta_2)$	$std(\theta_1)$	$std(\theta_2)$	$cor(\theta_1, \theta_2)$			
	Average							
Exact	0.5807	0.1960	0.0810	0.0813	0.4483			
	MSE							
Semi-auto ABC	0.3402	0.0199	0.1521	0.1255	0.2235			
Auto-cov Semi-auto	0.0048	0.0147	0.0012	0.0070	0.1212			
Auto-cov Rejection ABC	0.0047	0.0145	0.0010	0.0070	0.1196			
	K = 20							
GLLiM mixture	0.0340	0.0060	0.1223	0.0367	0.1691			
GLLiM-E-ABC	0.0103	0.0066	0.0020	0.0037	0.0440			
GLLiM-EV-ABC	0.0256	0.0065	0.0052	0.0035	0.0375*			
GLLiM-L2-ABC	0.0095	0.0057	0.0016	0.0031	0.0470			
GLLiM-MW2-ABC	0.0038	0.0041	0.0005	0.0013	0.0509			
GLLiM-MW2-SMC	0.0032*	0.0035*	0.0003*	0.0010*	0.0513			
ABC-DNN [Jiang et al. 2017]	0.0096	0.0089	0.0025	0.0026	0.0517			

True posterior values computed numerically

				_		
н.		er	Ce	c	\r h	I D C
	O	~				

Multiple hyperboloid example

Parameter $\theta = (x, y)$, d = 10 dimensional observation $\mathbf{y} = (y_1, \ldots, y_d)$ with a likelihood that depends on two pairs $\mathbf{m}^1 = (\mathbf{m}_1^1, \mathbf{m}_2^1)$ and $\mathbf{m}^2 = (\mathbf{m}_1^2, \mathbf{m}_2^2)$, $\sigma^2 = 0.01$ and $\nu = 3$

$$\begin{split} f_{\boldsymbol{\theta}}(\mathbf{y}) &= \frac{1}{2} \mathcal{S}_d(\mathbf{y}; F_{\mathbf{m}^1}(\boldsymbol{\theta}) \mathbb{I}_d, \sigma^2 \mathbf{I}_d, \nu) + \frac{1}{2} \mathcal{S}_d(\mathbf{y}; F_{\mathbf{m}^2}(\boldsymbol{\theta}) \mathbb{I}_d, \sigma^2 \mathbf{I}_d, \nu) \\ \text{where } F_{\mathbf{m}}(\boldsymbol{\theta}) &= (\|\boldsymbol{\theta} - \mathbf{m}_1\|_2 - \|\boldsymbol{\theta} - \mathbf{m}_2\|_2), \text{ if } \mathbf{m} = (\mathbf{m}_1, \mathbf{m}_2) \;. \end{split}$$

 \rightarrow Posterior distribution that concentrates around four hyperbolas True $\theta = (1.5, 1)$

Metropolis-Hastings sample

GLLiM $N = 10^5, K = 38$ (BIC); Rejection and SMC ABC $M = 10^6$, $\epsilon = 0.1\%$ quantile (1000 values)

A physical model inversion in planetary science

Goal : Study the textural properties of planetary materials

Origin : 1) Remote sensing (Mars surface), 2) Laboratory (analog materials)

Hapke's radiative transfer model $\mathbf{y}=F(\boldsymbol{\theta})+\varepsilon$

Measurements from 10 geometries

Determination of unknown parameters $(\omega, \bar{\theta}, b, c)$ via reflectance information (d = 10 geometries)

GLLiM-ABC

Laboratory observations: Nontronite

GLLiM: K = 40 (BIC K = 39), $N = 10^5$; Rejection ABC: $M = 10^5$, ϵ is the 0.1% quantile 1 Nontronite BRDF y : 10 geometries measured (incidence $\theta_0 = 45$, azimuth $\phi = 0$) at 2310nm \rightarrow Two sets of parameters: $(\omega, \overline{\theta}, b, c) = (0.59, 0.15, 0.14, 0.06)$ and (0.59, 0.42, 0.14, 0.06)

theta

Left: GLLiM-E-ABC, GLLiM-EV-ABC (dot), GLLiM-L2-ABC, GLLiM-MW2-ABC, Semi-automatic ABC Right: signal reconstructions

An extension of *semi-automatic ABC* with surrogate posteriors in place of summary statistics, can be used as an alternative to discrepancy-based approaches

Requirements:

- A tractable, scalable model to learn the surrogates : e.g. GLLiM up to d = 100 and more with GLLiM-iid and Hybrid-GLLiM [Deleforge et al 2015]; can deal with missing data; latent variables
- A metric between distributions: e.g. L₂, MW₂

First results and conclusions:

- No need to choose summary statistics
- A (restricted) convergence result to the true posterior
- Satisfying performance when posteriors are multimodal
- Surrogate posterior quality seems not critical
- Wasserstein-based distance seems more robust than L₂

Short term improvements/ Future work:

- Other ABC scheme than rejection and SMC ABC (IS ABC, MCMC ABC, etc.)
- GLLiM use & implementation: higher computational cost, BNP variant to select K
- Other metrics between distributions
- Use in Bayesian Synthetic Likelihood context
- Sequential learning easy with GLLiM
- Other learning scheme than GLLiM (Mixture density networks, Invertible NN, Normalizing flows)

Special thanks to: Guillaume Kon Kam King, Benoit Kugler and Sylvain Douté

Thank you for your attention !

Paper: F. Forbes, H. Nguyen, T. Nguyen, J. Arbel, ABC with surrogate posteriors https://hal.archives-ouvertes.fr/hal-03139256 Code available at https://github.com/Trung-TinNguyenDS/GLLiM-ABC

References

Bernton, E., Jacob, P. E., Gerber, M., Robert, C. P. (2019). Inference in generative models using the Wasserstein distance. JRSS B .

Crackel, R, & Flegal, J. (2017). Bayesian inference for a flexible class of bivariate Beta distributions. J. of Statistical Computation & simulation.

Deleforge, A., Forbes, F. & Horaud, R. (2015). High-Dimensional Regression with Gaussian Mixtures and Partially-Latent Response Variables. Statistics & Computing.

Delon, J. & Desolneux, A. (2020). A Wasserstein-type distance in the space of Gaussian Mixture Models. SIAM Journal on Imaging Sciences.

Drovandi, C. & Pettitt, A. (2011). Likelihood-free Bayesian estimation of multivariate quantile distributions. CSDA.

Fearnhead, P. & Prangle, D. (2012). Constructing summary statistics for ABC: semi-automatic ABC. JRSS B.

Gutmann, M., Dutta, R., Kaski, S., and Corander, J. (2018). Likelihood-free inference via classification. Statistics & Computing.

Jiang, B., et al. (2017). Learning summary statistics for ABC via Deep Neural Network. Statistica Sinica.

Jiang, B., et al. (2018). Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy, AISTATS.

Nguyen, H. D., Arbel, J., Lü, H. & Forbes, F. (2020). Approximate Bayesian Computation Via the Energy Statistic. IEEE Access.

Park, M., Jitkrittum, W. & Sejdinovic, D. (2016). K2-ABC: ABC with kernel embeddings. AISTATS.

Prangle, D., Everitt, R. G. & Kypraios, T. (2018). A rare event approach to high-dimensional ABC. Statistics & Computing.

Rubio, F. & Johansen, A. M. (2013). A simple approach to maximum intractable likelihood estimation. Electronic Journal of Statistics.

Wiqvist, S., Mattei, P.-A., Picchini, U. & Frellsen, J. (2019). Partially exchangeable networks and architectures for learning summary statistics in ABC. ICML.

Convergence of the ABC quasi-posterior: Rejection ABC

Goal: sample approximately from $\pi(\theta \mid \mathbf{y}) \propto \pi(\theta) f_{\theta}(\mathbf{y})$ using $D(\mathbf{y}, \mathbf{z}) (D(\mathbf{s}(\mathbf{y}), \mathbf{s}(\mathbf{z})))$

Rejection ABC: replace intractable f_{θ} by: $L_{\epsilon}(\mathbf{y}, \theta) = \int_{\mathcal{Y}} \mathbb{I}_{\{D(\mathbf{y}, \mathbf{z}) < \epsilon\}} f_{\theta}(\mathbf{z}) d\mathbf{z}$

$$\longrightarrow \quad \mathsf{ABC} \text{ quasi-posterior: } \pi_{\epsilon}(\boldsymbol{\theta} \mid \mathbf{y}) \propto \pi(\boldsymbol{\theta}) \int_{\mathcal{Y}} \mathbb{I}_{\{D(\mathbf{y}, \mathbf{z}) < \epsilon\}} f_{\boldsymbol{\theta}}(\mathbf{z}) \ d\mathbf{z}$$

Convergence of the quasi-posterior to $\pi(\theta \mid \mathbf{y})$: intuition of the proof

when $\epsilon \to 0$ then $D(\mathbf{y}, \mathbf{z}) \to 0$ so $\mathbf{z} \to \mathbf{y}$ and $\{\mathbf{z} \in \mathcal{Y}, \ D(\mathbf{y}, \mathbf{z}) < \epsilon\} \to \{\mathbf{y}\}$

$$\pi(\boldsymbol{\theta}) \int_{\mathcal{Y}} \mathbb{I}_{\{D(\mathbf{y}, \mathbf{z}) < \epsilon\}} f_{\boldsymbol{\theta}}(\mathbf{z}) \, d\mathbf{z} \ \rightarrow \ \pi(\boldsymbol{\theta}) \int_{\mathcal{Y}} \mathbb{I}_{\{\mathbf{z}=\mathbf{y}\}} f_{\boldsymbol{\theta}}(\mathbf{z}) \, d\mathbf{z} \ \rightarrow \ \pi(\boldsymbol{\theta}) f_{\boldsymbol{\theta}}(\mathbf{y})$$

Details in [Rubio & Johansen 2013, Prangle et al 2018, Berton et al 2019]

The requirement $\{\mathbf{z} \in \mathcal{Y}, D(\mathbf{y}, \mathbf{z}) < \epsilon\} \rightarrow \{\mathbf{y}\}$ is too strong

• An equivalent formulation (Bayes' theorem):

$$\pi_{\epsilon}(\boldsymbol{\theta} \mid \mathbf{y}) \propto \int_{\mathcal{Y}} \mathbb{1}_{\{D(\mathbf{y}, \mathbf{z}) \leq \epsilon\}} \pi(\boldsymbol{\theta}) f_{\boldsymbol{\theta}}(\mathbf{z}) d\mathbf{z} \propto \int_{\mathcal{Y}} \mathbb{1}_{\{D(\mathbf{y}, \mathbf{z}) \leq \epsilon\}} \pi(\boldsymbol{\theta} \mid \mathbf{z}) \pi(\mathbf{z}) d\mathbf{z}$$

replace $D(\mathbf{y}, \mathbf{z})$ by $D(\pi(\cdot \mid \mathbf{y}), \pi(\cdot \mid \mathbf{z}))$, D now a distance on densities

• A new quasi-posterior: $q_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}) \propto \int_{\mathcal{V}} \mathbb{1}_{\{D(\pi(\cdot|\mathbf{y}), \pi(\cdot|\mathbf{z})) \leq \epsilon\}} \pi(\boldsymbol{\theta}|\mathbf{z}) \pi(\mathbf{z}) d\mathbf{z}$

Result [FF et al, Theorem 1]: $q_{\epsilon}(\cdot \mid \mathbf{y}) \to \pi(\cdot \mid \mathbf{y})$ in total variation when $\epsilon \to 0$

Intuition of the proof:

when $\epsilon \to 0$ then $D(\pi(\cdot \mid \mathbf{y}), \pi(\cdot \mid \mathbf{z})) \to 0$, then $\pi(\cdot \mid \mathbf{z}) \to \pi(\cdot \mid \mathbf{y})$ and

$$\int_{\mathcal{Y}} \mathbb{I}_{\{D(\pi(\cdot|\mathbf{y}),\pi(\cdot|\mathbf{z})) \leq \epsilon\}} \pi\left(\boldsymbol{\theta} \mid \mathbf{z}\right) \pi\left(\mathbf{z}\right) d\mathbf{z} \to \int_{\mathcal{Y}} \mathbb{I}_{\{\pi(\cdot|\mathbf{z})=\pi(\cdot|\mathbf{y})\}} \pi\left(\boldsymbol{\theta} \mid \mathbf{y}\right) \pi\left(\mathbf{z}\right) d\mathbf{z} \propto \pi\left(\boldsymbol{\theta} \mid \mathbf{y}\right)$$

 $\{\mathbf{z} \in \mathcal{Y}, D\left(\pi(\cdot|\mathbf{y}), \pi(\cdot|\mathbf{z})\right) \leq \epsilon\} \rightarrow \{\mathbf{z} \in \mathcal{Y}, \pi(\cdot|\mathbf{z}) = \pi(\cdot|\mathbf{y})\} \text{ is less demanding}$

In practice: replace the unknown $\pi(\cdot|\mathbf{y})$ by a tractable approximation

orence	FOR	hec

GLLiM-ABC

22 / 20

Appendix: GLLiM model hierarchical definition

$$\mathbf{y} = \sum_{k=1}^{K} \mathbb{1}_{(z=k)} (\mathbf{A}_k' \boldsymbol{\theta} + \mathbf{b}_k' + \mathbf{E}_k')$$

 $\mathbf{y} \in R^d$, $\boldsymbol{\theta} \in R^\ell$ with $d >> \ell$, 1 Indicator function, $\mathbf{A}'_k \ d \times \ell$ matrix, \mathbf{b}'_k d-dim vector

 \mathbf{E}_k' : observation noise in \mathbb{R}^d and reconstruction error, Gaussian, centered, independent on θ , y, and z

$$p(\mathbf{y}|\boldsymbol{\theta}, z = k; \boldsymbol{\phi}') = \mathcal{N}(\mathbf{y}; \mathbf{A}'_k \boldsymbol{\theta} + \mathbf{b}'_k, \boldsymbol{\Sigma}'_k)$$

• Affine transformations are local: mixture of K Gaussians

$$\begin{array}{lll} p(\boldsymbol{\theta}|z=k;\boldsymbol{\phi}') &=& \mathcal{N}(\boldsymbol{\theta};\mathbf{c}'_k,\boldsymbol{\Gamma}'_k) \\ p(z=k;\boldsymbol{\phi}') &=& \pi'_k \end{array}$$

• The set of all model parameters is:

$$\boldsymbol{\phi}' = \{\mathbf{c}'_k, \mathbf{\Gamma}'_k, \pi'_k, \mathbf{A}'_k, \mathbf{b}'_k, \mathbf{\Sigma}'_k\}_{k=1}^K$$

possible constraint: $\Sigma'_k = \sigma^2 \mathbf{I}_d$ for $k = 1 \dots K$ (isotropic) or bloc diagonal (GLLIM-iid)

Florence Forbes

Appendix : GLLiM Geometric Interpretation

This model induces a partition of \mathbb{R}^{ℓ} into K regions \mathcal{R}_k where the transformation τ_k is the most probable.

If $|\Gamma'_1| = \cdots = |\Gamma'_K|$: $\{\mathcal{R}_k, k = 1 \dots K\}$ define a Voronoi diagram of centroids $\{\mathbf{c}'_k, k = 1 \dots K\}$ (Mahalanobis distance $||.||_{\Gamma'}$).

$$p_{G}(\mathbf{y}|\boldsymbol{\theta}, \boldsymbol{\phi}') = \sum_{k=1}^{K} \eta_{k}'(\boldsymbol{\theta}) \mathcal{N}(\mathbf{y}; \mathbf{A}_{k}'\boldsymbol{\theta} + \mathbf{b}_{k}', \boldsymbol{\Sigma}_{k}') \quad \text{with } \eta_{k}'(\boldsymbol{\theta}) = \frac{\pi_{k}' \mathcal{N}(\boldsymbol{\theta}; \mathbf{c}_{k}', \boldsymbol{\Gamma}_{k}')}{\sum_{j=1}^{K} \pi_{j}' \mathcal{N}(\boldsymbol{\theta}; \mathbf{c}_{j}', \boldsymbol{\Gamma}_{j}')}$$
$$p_{G}(\boldsymbol{\theta}|\mathbf{y}, \boldsymbol{\phi}) = \sum_{k=1}^{K} \eta_{k}(\mathbf{y}) \mathcal{N}(\boldsymbol{\theta}; \mathbf{A}_{k}\mathbf{y} + \mathbf{b}_{k}, \boldsymbol{\Sigma}_{k}) \quad \text{with } \eta_{k}(\mathbf{y}) = \frac{\pi_{k} \mathcal{N}(\mathbf{y}; \mathbf{c}_{k}, \boldsymbol{\Gamma}_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{y}; \mathbf{c}_{j}, \boldsymbol{\Gamma}_{j})}$$

Florence Forbes

OBayes Sept 8, 2022 24 / 20

Appendix : GLLiM link between ϕ and ϕ'

$$\mathbf{c}_{k} = \mathbf{A}_{k}^{\prime} \mathbf{c}_{k}^{\prime} + \mathbf{b}_{k}^{\prime}$$

$$\mathbf{\Gamma}_{k} = \mathbf{\Sigma}_{k}^{\prime} + \mathbf{A}_{k}^{\prime} \mathbf{\Gamma}_{k}^{\prime} \mathbf{A}_{k}^{\prime\top}$$

$$\mathbf{\Sigma}_{k} = \left(\mathbf{\Gamma}_{k}^{\prime-1} + \mathbf{A}_{k}^{\prime\top} \mathbf{\Sigma}_{k}^{\prime-1} \mathbf{A}_{k}^{\prime}\right)^{-1}$$

$$\mathbf{A}_{k} = \mathbf{\Sigma}_{k} \mathbf{A}_{k}^{\prime\top} \mathbf{\Sigma}_{k}^{\prime-1}$$

$$\mathbf{b}_{k} = \mathbf{\Sigma}_{k} \left(\mathbf{\Gamma}_{k}^{\prime-1} \mathbf{c}_{k}^{\prime} - \mathbf{A}_{k}^{\prime\top} \mathbf{\Sigma}_{k}^{\prime-1} \mathbf{b}_{k}^{\prime}\right)$$

The number of parameters depends on the GLLiM variant but is in $O(dK\ell)$

If diagonal covariances Σ'_k , the number of parameters is $K - 1 + K(\ell + \ell(\ell + 1)/2 + d\ell + 2d)$ \rightarrow for $K = 100, \ell = 4$ and d = 10 leads to 7499 parameters and to 61499 parameters if d = 100.

• Optimal transport-based distance [Delon & Desolneux 2020]

Quadratic cost Wasserstein distance between $g_1 = \mathcal{N}(\cdot; \mu_1, \Sigma_1)$ and $g_2 = \mathcal{N}(\cdot; \mu_2, \Sigma_2)$:

$$W_{2}^{2}(g_{1},g_{2}) = \|\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}\|_{2}^{2} + \operatorname{trace}\left(\boldsymbol{\Sigma}_{1} + \boldsymbol{\Sigma}_{2} - 2\left(\boldsymbol{\Sigma}_{1}^{1/2}\boldsymbol{\Sigma}_{2}\boldsymbol{\Sigma}_{1}^{1/2}\right)^{1/2}\right)$$

Mixture Wasserstein distance (MW2) between two Gaussian mixtures $f_1 = \sum_{k=1}^{K_1} \pi_{1k} g_{1k}$ and $f_2 = \sum_{k=1}^{K_2} \pi_{2k} g_{2k}$:

$$\mathsf{MW}_2^2(f_1, f_2) = \min_{\mathbf{w} \in \Pi(\pi_1, \pi_2)} \sum_{k, l} w_{kl} \; \mathsf{W}_2^2(g_{1k}, g_{2l})$$

• L₂ distance

L₂ scalar product between two Gaussian distributions g_1 and g_2 :

$$\langle g_1, g_2 \rangle = \mathcal{N}(\boldsymbol{\mu}_1; \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_1 + \boldsymbol{\Sigma}_2)$$

L₂ distance between two Gaussian mixtures f_1 and f_2 :

$$\mathsf{L}_2^2(f_1, f_2) = \sum_{k,l} \pi_{1k} \pi_{1l} < g_{1k}, g_{1l} > + \sum_{k,l} \pi_{2k} \pi_{2l} < g_{2k}, g_{2l} > -2 \sum_{k,l} \pi_{1k} \pi_{2l} < g_{1k}, g_{2l} > -2 \sum_{k,l} \pi_{1k} \pi_{2l} < g_{2k}, g_{2l} > -2 \sum_{k,l} \pi_{1k} \pi_{2l} < g_{2k}, g_{2l} > -2 \sum_{k,l} \pi_{2k} \pi_{2k} + 2 \sum_{k,l} \pi_{2k} \pi_{2k} + 2 \sum_{k,l} \pi_{2k} + 2 \sum_{k,l}$$

Appendix: Theorem 1 $q_{\epsilon}(\cdot|\mathbf{y}) \rightarrow \pi(\cdot|\mathbf{y})$ in TV

Theorem

For every
$$\epsilon > 0$$
, let $A_{\epsilon} = \{ \mathbf{z} \in \mathcal{Y} : D(\pi(\cdot \mid \mathbf{y}), \pi(\cdot \mid \mathbf{z})) \le \epsilon \}$

(A1) $\pi(\boldsymbol{\theta} \mid \cdot)$ is continuous for all $\boldsymbol{\theta} \in \Theta$, and $\sup_{\boldsymbol{\theta} \in \Theta} \pi(\boldsymbol{\theta} \mid \mathbf{y}) < \infty$; (A2) There exists a $\gamma > 0$ such that $\sup_{\boldsymbol{\theta} \in \Theta} \sup_{\mathbf{z} \in A_{\gamma}} \pi(\boldsymbol{\theta} \mid \mathbf{z}) < \infty$; (A3) $D(\cdot, \cdot) : \Pi \times \Pi \to \mathbb{R}_{+}$ is a metric on the functional class

 $\Pi = \{\pi \left(\cdot \mid \mathbf{y}
ight) : \mathbf{y} \in \mathcal{Y} \}$;

(A4) $D(\pi(\cdot | \mathbf{y}), \pi(\cdot | \mathbf{z}))$ is continuous, with respect to \mathbf{z} .

Under (A1)–(A4), $q_{\epsilon}(\cdot | \mathbf{y})$ converges in total variation to $\pi(\cdot | \mathbf{y})$, for fixed \mathbf{y} , as $\epsilon \to 0$.

Appendix: proof Theorem 1

$$q_{\epsilon}\left(\boldsymbol{\theta} \mid \mathbf{y}\right) = \int_{\mathcal{Y}} K_{\epsilon}\left(\mathbf{z}; \mathbf{y}\right) \pi\left(\boldsymbol{\theta} \mid \mathbf{z}\right) d\mathbf{z} \quad \text{with} \quad K_{\epsilon}(\mathbf{z}; \mathbf{y}) \propto \mathbb{I}_{A_{\epsilon}}\left(\mathbf{z}\right) \pi(\mathbf{z})$$

$$\begin{aligned} |q_{\epsilon} \left(\boldsymbol{\theta} \mid \mathbf{y}\right) - \pi \left(\boldsymbol{\theta} \mid \mathbf{y}\right)| &\leq \int_{\mathcal{Y}} K_{\epsilon} \left(\mathbf{z}; \mathbf{y}\right) |\pi \left(\boldsymbol{\theta} \mid \mathbf{z}\right) - \pi \left(\boldsymbol{\theta} \mid \mathbf{y}\right)| \, d\mathbf{z} \\ &\leq \sup_{\mathbf{z} \in A_{\epsilon}} |\pi \left(\boldsymbol{\theta} \mid \mathbf{z}\right) - \pi \left(\boldsymbol{\theta} \mid \mathbf{y}\right)| \quad \left(K_{\epsilon} \left(\cdot; \mathbf{y}\right) \text{ is a pdf}\right) \\ &= |\pi \left(\boldsymbol{\theta} \mid \mathbf{z}_{\epsilon}\right) - \pi \left(\boldsymbol{\theta} \mid \mathbf{y}\right)| \text{ for } \mathbf{z}_{\epsilon} \in A_{\epsilon} \text{ (by (A1) and } A_{\epsilon} \text{ compact}) \end{aligned}$$

For each $\epsilon > 0$, $\mathbf{z}_{\epsilon} \in A_{\epsilon}$, $\lim_{\epsilon \to 0} \mathbf{z}_{\epsilon} \in A_0 = \bigcap_{\epsilon \in \mathbb{Q}_+} A_{\epsilon}$. Then, $A_0 = \{\mathbf{z} \in \mathcal{Y} : D(\pi(\cdot | \mathbf{z}), \pi(\cdot | \mathbf{y})) = 0\} = \{\mathbf{z} \in \mathcal{Y} : \pi(\cdot | \mathbf{z}) = \pi(\cdot | \mathbf{y})\}$ (continuity, equality property of D)

Then $\epsilon \to 0$ yields $|\pi(\boldsymbol{\theta} \mid \mathbf{z}_{\epsilon}) - \pi(\boldsymbol{\theta} \mid \mathbf{y})| \to |\pi(\boldsymbol{\theta} \mid \mathbf{y}) - \pi(\boldsymbol{\theta} \mid \mathbf{y})| = 0$ and hence $|q_{\epsilon}(\boldsymbol{\theta} \mid \mathbf{y}) - \pi(\boldsymbol{\theta} \mid \mathbf{y})| \to 0$, for each $\theta \in \Theta$.

$$\mathsf{By} \; (\mathsf{A2}), \; \sup_{\boldsymbol{\theta} \in \Theta} q_{\epsilon} \left(\boldsymbol{\theta} \mid \mathbf{y}\right) = \sup_{\boldsymbol{\theta} \in \Theta} \int_{\mathcal{Y}} K_{\epsilon} \left(\mathbf{z}; \mathbf{y}\right) \pi \left(\boldsymbol{\theta} \mid \mathbf{z}\right) d\mathbf{z} \leq \sup_{\boldsymbol{\theta} \in \Theta} \sup_{\mathbf{z} \in A_{\gamma}} \pi \left(\boldsymbol{\theta} \mid \mathbf{z}\right) < \infty$$

for some γ , so that $\epsilon \leq \gamma$. Finally (bounded convergence theorem),

$$\lim_{\epsilon \to 0} \int_{\Theta} |q_{\epsilon} \left(\boldsymbol{\theta} \mid \mathbf{y}\right) - \pi \left(\boldsymbol{\theta} \mid \mathbf{y}\right)| d\boldsymbol{\theta} = \lim_{\epsilon \to 0} ||q_{\epsilon} \left(\cdot \mid \mathbf{y}\right) - \pi \left(\cdot \mid \mathbf{y}\right)||_{1} = 0$$

Florence Forbes

Appendix: Theorem 2 Theorem

Assume the following: $\mathcal{X} = \Theta \times \mathcal{Y}$ is a compact set and

(B1) For joint density π , there exists G_{π} a probability measure on Ψ such that, with $g_{\varphi} \in \mathcal{H}_{\mathcal{X}}$,

$$\pi(\mathbf{x}) = \int_{\Psi} g_{\boldsymbol{\varphi}}(\mathbf{x}) \ G_{\pi}(d\boldsymbol{\varphi});$$

(B2) The true posterior density $\pi(\cdot | \cdot)$ is continuous both with respect to θ and y;

(B3) $D(\cdot, \cdot): \Pi \times \Pi \to \mathbb{R}_+ \cup \{0\}$ is a metric on a functional class Π , which contains the class

$$\left\{ p^{K,N}\left(\cdot \mid \mathbf{y}\right) : \mathbf{y} \in \mathcal{Y}, K \in \mathbb{N}, N \in \mathbb{N} \right\}$$
.

In particular, $D\left(p^{K,N}\left(\cdot \mid \mathbf{y}\right), p^{K,N}\left(\cdot \mid \mathbf{z}\right)\right) = 0$, if and only if $p^{K,N}\left(\cdot \mid \mathbf{y}\right) = p^{K,N}\left(\cdot \mid \mathbf{z}\right)$; (B4) For every $\mathbf{y} \in \mathcal{Y}$, $\mathbf{z} \mapsto D\left(p^{K,N}\left(\cdot \mid \mathbf{y}\right), p^{K,N}\left(\cdot \mid \mathbf{z}\right)\right)$ is a continuous function on \mathcal{Y} .

Then, under (B1)–(B4), the Hellinger distance $D_H\left(q_{\epsilon}^{K,N}\left(\cdot \mid \mathbf{y}\right), \pi\left(\cdot \mid \mathbf{y}\right)\right)$ converges to 0 in some measure λ , with respect to $\mathbf{y} \in \mathcal{Y}$ and in probability, with respect to the sample $\{(\boldsymbol{\theta}_n, \mathbf{y}_n), n \in [N]\}$. That is, for any $\alpha > 0, \beta > 0$, it holds that

$$\lim_{\epsilon \to 0, K \to \infty, N \to \infty} \Pr\left(\lambda\left(\left\{\mathbf{y} \in \mathcal{Y} : D_{H}^{2}\left(q_{\epsilon}^{K,N}\left(\cdot \mid \mathbf{y}\right), \pi\left(\cdot \mid \mathbf{y}\right)\right) \ge \beta\right\}\right) \le \alpha\right) = 1.$$

Appendix: sketch of proof Theorem 2

$$q_{\epsilon}^{K,N}\left(\boldsymbol{\theta} \mid \mathbf{y}\right) = \int_{\mathcal{Y}} K_{\epsilon}^{K,N}\left(\mathbf{z};\mathbf{y}\right) \pi\left(\boldsymbol{\theta} \mid \mathbf{z}\right) d\mathbf{z} \text{ with } K_{\epsilon}^{K,N}\left(\mathbf{z};\mathbf{y}\right) \propto \mathbbm{1}_{A_{\epsilon,\mathbf{y}}^{K,N}}(\mathbf{z}) \pi\left(\mathbf{z}\right)$$

Relationship between Hellinger and L₁ distances yields:

$$D_{H}^{2}\left(q_{\epsilon}^{K,N}\left(\cdot \mid \mathbf{y}\right), \pi\left(\cdot \mid \mathbf{y}\right)\right) \leq 2D_{H}\left(\pi\left(\cdot \mid \mathbf{z}_{\epsilon,\mathbf{y}}^{K,N}\right), \pi\left(\cdot \mid \mathbf{y}\right)\right)$$

where
$$\mathbf{z}_{\epsilon,\mathbf{y}}^{K,N} \in B_{\epsilon,\mathbf{y}}^{K,N}$$
 with $B_{\epsilon,\mathbf{y}}^{K,N} = \operatorname{argmax}_{\mathbf{z} \in A_{\epsilon,\mathbf{y}}^{K,N}} D_1\left(\pi\left(\cdot \mid \mathbf{z}\right), \pi\left(\cdot \mid \mathbf{y}\right)\right)$
 $\mathbf{z}_{0,\mathbf{y}}^{K,N} = \lim_{\epsilon \to 0} \mathbf{z}_{\epsilon,\mathbf{y}}^{K,N}$ and $\mathbf{z}_{0,\mathbf{y}}^{K,N} \in A_{0,\mathbf{y}}^{K,N} = \left\{\mathbf{z} \in \mathcal{Y} : p^{K,N}\left(\cdot \mid \mathbf{z}\right) = p^{K,N}\left(\cdot \mid \mathbf{y}\right)\right\}$

Triangle inequality for D_H :

$$D_{H}\left(\pi\left(\cdot \mid \mathbf{z}_{\epsilon,\mathbf{y}}^{K,N}\right), \pi\left(\cdot \mid \mathbf{y}\right)\right) \leq D_{H}\left(\pi\left(\cdot \mid \mathbf{z}_{\epsilon,\mathbf{y}}^{K,N}\right), \pi\left(\cdot \mid \mathbf{z}_{0,\mathbf{y}}^{K,N}\right)\right) + D_{H}\left(\pi\left(\cdot \mid \mathbf{z}_{0,\mathbf{y}}^{K,N}\right), p^{K,N}\left(\cdot \mid \mathbf{y}\right)\right) + D_{H}\left(p^{K,N}\left(\cdot \mid \mathbf{y}\right), \pi\left(\cdot \mid \mathbf{y}\right)\right)$$

First term in the rhs: goes to 0 as ϵ goes to 0 independently on K, N

Two other terms are similar: use [Rakhlin et al 2005, Corol. 2.2]

Florence Forbes

GLLiM-ABC

 $z_1=v_1/(1+v_1)$ and $z_2=v_2/(1+v_2)$ with

 $v_1 = (u_1 + u_3)/(u_5 + u_4)$ and $v_2 = (u_2 + u_4)/(u_5 + u_3)$, where $u_i \sim \mathsf{Gamma}(\theta_i, 1)$

Likelihood for \mathbf{z} not available in closed form

GLLiM: K = 100 (set manually) for R = 100 *i.i.d.* observations (d = 2), $\ell = 5$, $\times N = 10^5$ ABC: ϵ is set to the 0.05% quantile leading to selected samples of size 50,

Empirical parameter means, and RMSE averaged over 10 repetitions with observed data generated with $\theta = (1, 1, 1, 1, 1)$.

Procedure	$\bar{\theta}_1$	$\bar{\theta}_2$	$\bar{\theta}_3$	$\bar{\theta}_4$	$\bar{\theta}_5$	$R(\theta_1)$	$R(\theta_2)$	$R(\theta_3)$	$R(\theta_4)$	$R(\theta_5)$
GLLiM mixture	2.510	2.546	2.714	2.630	2.591	2.145	2.291	2.201	2.277	2.056
GLLiM-E-ABC	1.439	1.051	0.914	1.095	1.264	0.952	0.791	0.483	0.629	0.510
GLLiM-EV-ABC	1.444	1.037	0.916	1.153	1.205	1.003	0.751	0.556	0.596	0.521
GLLiM-L2-ABC	1.860	2.301	2.430	2.136	2.620	1.268	1.859	2.008	1.536	1.966
GLLiM-MW2-ABC	1.330	1.000	0.8465	1.056	1.159	0.836	0.781	0.458	0.558	0.448
	Best results using data discrepancies as reported in [Nguyen et al 2020]									
R = 100	1.275	1.176	0.751	0.830	1.237	0.834	0.593	0.459	0.219	0.409

Bivariate Beta model: $R = 100 \ i.i.d.$ observations

Marginal ABC posteriors for each of the 5 parameters

GLLiM-E-ABC (red), GLLiM-EV-ABC (dotted red), GLLiM-MW2-ABC (black), GLLiM-L2-ABC (blue), SA-ABC on 14 quantiles (green), GLLiM mixture (dotted green)

Bivariate Beta model: $R = 100 \ i.i.d.$ observations, SMC-ABC and WABC

Marginal ABC posteriors for each of the 5 parameters

SMC-ABC procedures for a budget of $M = 10^5$ (dotted lines) and $M = 10^6$ (plain lines): GLLiM-MW2-SMC (black), GLLiM-L2-SMC (blue), WABC (red).

Moving average of order 2: $y'_t = z_t + \theta_1 z_{t-1} + \theta_2 z_{t-2}, t = 1 \dots 150$

 $N = 10^5$ series of length 150, the series to be inverted is simulated with $\theta_1 = 0.6$ and $\theta_2 = 0.2$. Rejection ABC: ϵ is set to the 0.1% quantile leading to selected samples of size 100

GLLiM: K = 20, R = 1, d = 150, $\ell = 2$, with bloc diagonal covariances, 5 blocs 30×30

Florence Forbes

GLLiM-ABC

34 / 20

$$f_{\boldsymbol{\theta}}(\mathbf{z}) = \mathcal{S}_d(\mathbf{z}; \mu^2 \mathbf{1}_d, \sigma^2 \mathbf{I}_d, \nu)$$

d = 10, mean $= (\mu^2 \dots \mu^2)^T$, isotropic scale matrix= $\sigma^2 \mathbf{I}_d$ ($\sigma^2 = 2$), dof (tail) $\nu = 2.1$ Observation y: true $\mu = 1$

Setting: GLLiM: $K = 10, N = 10^5$; Rejection ABC: $M = 10^5$, $\epsilon = 0.1\%$ (100 values)

True symmetric posterior $\pi(\mu|\mathbf{y})$

GLLiM-E-ABC GLLiM-EV-ABC (dot)

Semi-automatic ABC

GLLiM-L2-ABC GLLiM-MW2-ABC

Appendix: other illustration, sum of MA(1) processes

$$y'_{t} = z_{t} + \rho z_{t-1}$$

$$y''_{t} = z'_{t} - \rho z'_{t-1}$$

$$y_{t} = y'_{t} + y''_{t}$$

 $\{z_t\}$ and $\{z_t'\}$ are *i.i.d.* standard normal realizations and ρ is an unknown scalar parameter

$$\rightarrow \mathbf{y} = (y_1, \dots, y_d)^\top \sim \mathcal{N}(\mathbf{0}_d, 2(\rho^2 + 1)\mathbf{I}_d)$$

Observation \mathbf{y} : d = 10, true $\rho = 1$

Setting: GLLiM: $K = 20, N = 10^5$; Rejection ABC: $M = 10^5$, $\epsilon = 0.1\%$ (100 selected values)

36 / 20

Appendix: other illustration, sum of MA(2)

$$\begin{aligned} y'_t &= z_t + \theta_1 z_{t-1} + \theta_2 z_{t-2} \\ y''_t &= z'_t - \theta_1 z'_{t-1} + \theta_2 z'_{t-2} \\ y_t &= y'_t + y''_t, \end{aligned}$$

K = 80 and $N = M = 10^5$, ϵ to the 1% distance quantile (samples of of size 1000) An observation of size d = 10 is simulated from $\theta_1 = 1$ and $\theta_2 = 0.6$

Florence Forbes

GLLiM-ABC

OBayes Sept 8, 2022 37 / 20

Appendix: synthetic data from the Hapke model

Florence Forbes

GLLiM-ABC

OBayes Sept 8, 2022 38 / 20

Computation times (MacBook Pro 8 cores, 2.4 GHz)

Exp.	ABC	ℓ	d	K	N	M	R	BIC	GLLiM	Dist.	ABC	Package	
Beta	Rej-ABC												
	G-E-ABC	5	2	100	10^{5}	10^{5}	100	-	11h13m	3m03s	0.28s	abc	
	G-EV-ABC	5	2	100	10^{5}	10^{5}	100	-	11h13m	3m03s	0.51s	abc	
	G-L2-ABC	5	2	100	10^{5}	10^{5}	100	-	11h13m	19m02s	0.01s	abc	
	G-MW2-ABC	5	2	100	10^{5}	10^{5}	100	-	11h13m	19m02s	0.01s	abc	
	SMC-ABC												
	WABC	5	2	-	-	10^{6}	100	-	-	-	31m05s	winference	
	G-MW2-SMC	5	2	100	10^{5}	10^{6}	100	-	11h13m	-	34m53s	winference	
	G-L2-SMC	5	2	100	10^{5}	10^{6}	100	-	11h13m	-	2h34m	winference	
MA(2)	Rej-ABC												
	SA	2	150	-	-	10^{5}	1	-	-	-	1m25s	abctools	
	G-E-ABC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	50s	0.12s	abc	
	G-EV-ABC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	50s	0.20s	abc	
	G-L2-ABc	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	1m03s	0.01s	abc	
	G-MW2-ABC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	1m03s	0.01s	abc	
	SMC-ABC												
	WABC	2	30	-	-	10^{5}	5	-	-	-	10m29s	winference	
	G-MW2-SMC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	-	11m08s	winference	
	G-L2-SMC	2	30	20	10^{5}	10^{5}	5	5h46m	9m23s	-	8m43s	winference	
Hyperb.	Rej-ABC												
	SA	2	10	-	-	10^{6}	-	-	-	-	13s	abctools	
	G-E-ABC	2	10	38	10^{5}	10^{6}	-	1h43m	4m47s	25s	0.9s	abc	
	G-EV-ABC	2	10	38	10^{5}	10^{6}	-	1h43m	4m47s	11m28s	1.8s	abc	
	G-L2-ABC	2	10	38	10^{5}	10^{6}	-	1h43m	4m47s	4h18m	0.1s	abc	
	G-MW2-ABC	2	10	38	10^{5}	10^{6}	-	1h43m	4m47s	4h18m	0.1s	abc	
	SMC-ABC												
	G-MW2-SMC	2	10	38	10^{5}	10^{6}	-	1h43m	4m47s	-	1h10m	winference	
Hapke	Rej-ABC												
	SA	4	10	-	-	10^{5}	-	-	-	-	1.4s	abctools	
	G-E-ABC	4	10	40	10^{5}	10^{5}	-	2h59s	21m30s	3.3s	0.2s	abc	
	G-EV-ABC	4	10	40	10^{5}	10^{5}	-	2h59s	21m30s	79s	0.3s	abc	
	G-MW2-ABC	4	10	40	10^{5}	10^{5}	-	2h59s	21m30s	_40m10s_	0.01s	abc	
F	Iorence Forbes					GLLi	M-ABC		C)Bayes S	ept 8, 20	022 39/20	