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Bayesian inference with intractable likelihoods

A data generating model

Prior: π(θ)

Likelihood: fθ(z)

−→ z = {z1, . . . , zd} can be simulated from fθ

Goal: Estimation of θ given some observed y = {y1, . . . , yd}

Posterior: π(θ|y) ∝ π(θ)fθ(y)

What if fθ is not tractable, not available, too costly?
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Approximate Bayesian Computation (ABC)

Goal: get a sample of θ values from π(·|y)

Simulate M i.i.d. (θm , zm) for m = 1 . . .M

θm ∼ π(θ)

zm ∼ fθm

If D(y, zm) < ε then keep θm [Rejection ABC]

where D(y, zm) = ||y − zm|| or D(y, zm) = ||s(y)− s(zm)||

s is a summary statistic

−→ Which choice for D? for s? for ε?
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Summary statistics and distances

For continuous data ||y − zm|| < ε is inefficient in high dimension

Two main types of approaches

1. Summary-based procedures: effort on s, D ”standard” norm

||s(y)− s(zm)|| has a smaller variance

• Pros: Dimension reduction, smaller variance

• Cons: Loss of information, arbitrary s

Difficult to select a summary statistic in general

−→ Semi-automatic ABC [Fearnhead & Prangle 2012] : preliminary regression step
Requires d small, not for i.i.d. samples unless summarized, not for large time series
−→ OK for one vector of observations
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Summary statistics and distances

2. Data discrepancy-based procedures: effort on D, no need for s

−→ Replace ||y − zm|| by a distance between samples considered as
empirical distributions (instead of vectors)

zm = d−1
d∑
i=1

1Izi and y = d−1
d∑
i=1

1Iyi

- p-order Wasserstein distance [Bernton & al 2019]

- Kullback-Leibler (1 nearest neighbor density estimate) [Jiang et al 2018]

- Maximum Mean Discrepancy [Park et al 2016]

- Classification accuracy [Gutmann et al 2018]

- Energy distance: [Nguyen & al 2020]

- Integral probability semimetrics: [Legramanti & al 2022]

• Pros: ABC methods that do not require summary statistics

• Cons: Requires moderately large (i.i.d.) samples, not always available in inverse problems

⇒ 3. An approach that can be applied in both cases
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Semi-automatic ABC [Fearnhead & Prangle 2012]

The posterior mean is the optimal (quadratic loss) summary : s(z) = E[θ|z]

→ Use a preliminary linear regression step to learn an approximation of E[θ|z] as a function of z

from DN = {(θn, zn), n = 1 : N} simulated from the true joint distribution

• Variant 1: replace linear regression by neural networks ... [Jiang et al 2017, Wiqvist et al 2019]

• Variant 2: add extra higher order moments (eg variances) in s

A natural idea mentioned (not implemented) in [Jiang et al 2017]

→ Requires a procedure able to provide posterior moments at low cost

• Variant 3: replace s(z) by an approximation (surrogate) of π(θ|z)

Moments, point estimates replaced by functional summaries

Requires

→ a learning procedure able to provide tractable approximate posteriors
at low cost: Gaussian Locally Linear Mapping [Deleforge et al. 2015]

→ a tractable metric between distributions to compare them
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Surrogate posteriors as mixtures of affine Gaussian experts

The Gaussian Locally Linear mapping (GLLiM) model : an inverse regression approach that

• aims at capturing the link between z and θ with a mixture of K affine components

• provides for each z a posterior within a parametric family {pG(θ|z;φ),φ∈Φ}

φ={πk, ck,Γk,Ak,bk,Σk}Kk=1 and pG(θ|z;φ)=
K∑
k=1

ηk(z)N(θ;Akz+bk,Σk)

mixture components: N (.;µ,Σ) Gaussian pdf with mean µ, covariance Σ

mixture weights: ηk(z) =
πkN (z; ck,Γk)∑K
j=1 πjN (z; cj ,Γj)

Fit a GLLiM model to a learning set DN = {(θn, zn), n = 1 : N} simulated from the true joint

distribution: parameters φ learned with an EM algorithmφ∗K,N={π∗k, c
∗
k,Γ
∗
k,A

∗
k,b
∗
k,Σ

∗
k}
K
k=1
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Extended semi-automatic ABC: GLLiM-ABC

GLLiM surrogate posteriors for each z, pG(θ | z;φ∗K,N ) withφ∗K,N independent of z

pG(θ|z;φ∗K,N )=
K∑
k=1

η∗k(z)N(θ;A∗kz+b∗k,Σ
∗
k)

• Variant 1: approximate E[θ|z] with EG[θ|z;φ∗K,N ]=
∑K
k=1η

∗
k(z)(A∗kz + b∗k)

• Variant 2: add the log posterior variances from

VarG[θ|z;φ∗K,N ] =
K∑
k=1

η∗k(z)
[
Σ∗k + (A∗kz + b∗k)(A∗kz + b∗k)>

]

− (

K∑
k=1

η∗k(z)(A∗kz + b∗k))(

K∑
k=1

η∗k(z)(A∗kz + b∗k))>

• Variant 3: use full pG(θ | z;φ∗K,N )→ requires a metric for Gaussian mixtures

→ Mixture Wasserstein distance (MW2) [Delon & Desolneux 2020]

→ L2 distance
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GLLIM-ABC procedures

1: Inverse operator learning. Apply GLLiM on DN to get for any z pG(θ | z,φ∗K,N ) as a first

approximation of the true posterior π(θ | z)

2: Distances computation. For another simulated set EM={(θm, zm),m=1:M} and a given
observed y, do one of the following for each m:

Vector summary statistics:
GLLiM-E-ABC: Compute summary s1(zm) = EG[θ | zm;φ∗K,N ]

GLLiM-EV-ABC: Compute s1(zm) and s2(zm) the GLLiM posterior log-variances
Compute standard distances between summary statistics

Functional summary statistics:
GLLiM-MW2-ABC: Compute MW2(pG(·|zm;φ∗K,N ), pG(·|y;φ∗K,N ))

GLLiM-L2-ABC: Compute L2(pG(·|zm;φ∗K,N ), pG(·|y;φ∗K,N ))

3: Sample selection. Select the θm values that correspond to distances under an ε threshold
(rejection ABC) or apply some standard ABC procedure

4: Sample use. Use producedθ values to get a closer approximation of π(θ|y)
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Theoretical properties

• A new quasi-posterior formulation: qε(θ|y)∝
∫
Y

1I{D(π(·|y),π(·|z))≤ε}π(θ|z)π(z)dz

vs. Standard form: qε(θ|y)∝π(θ)

∫
Y

1I{D(s(y),s(z))≤ε}fθ(z) dz

Result [FF et al, Theorem 1]: qε(· | y)→ π(· | y) in total variation when ε→ 0

In practice: replace the unknown π(·|y) by a tractable approximation

• ABC quasi-posterior with surrogate posteriors {pK,N(·|y): y∈Y,K∈N, N ∈N}

qK,Nε (θ | y) ∝ π(θ)

∫
Y

1I{D(pK,N (·|y),pK,N (·|z))≤ε} fθ(z) dz

Result [FF et al, Theorem 2] : ε→ 0, K,N →∞

The Hellinger distance DH

(
qK,Nε (· | y) , π (· | y)

)
converges to 0

- in some measure λ, with respect to y ∈ Y
- in probability, with respect to the sample {(θn,yn) , n = 1 : N}

Restrictions:

- pK,N cannot be replaced by GLLiM pK,NG

- Truncated Gaussian distributions with constrained parameters can meet the restrictions
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Illustrations

i.i.d. samples:

• Moving average of order 2: one 150D series cut into 5 pieces, R = 5, d = 30, ` = 2

Examples with multimodal posteriors: 10D observation (a single y, e.g. summaries)

• Multiple hyperboloid example (` = 2 parameters)

• Real inverse problem in planetary science (` = 4 parameters)

Comparison of different (rejection and SMC ABC) procedures :

• GLLiM-E-ABC and GLLiM-EV-ABC (abc package [Csillery et al 2012])

• GLLiM-L2-ABC, GLLiM-MW2-ABC (transport package [Schuhmacher et al 2020])

• Semi-automatic ABC (abctools R package [Nunes and Prangle, 2015])

• Wasserstein ABC and SMC-ABC (winference R package [Bernton et al, 2020])

Setting:

• GLLiM learning N = 105, K Gaussians (BIC) (xLLiM package [Perthame et al 2017])

• Rejection and SMC ABC: simulations M = 105 or 106, ε is a distance quantile (e.g. 0.1%)
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Moving average of order 2: yt = zt + θ1zt−1 + θ2zt−2, t = 1 . . . 150

Rejection ABC: ε is set to the 0.1% quantile leading to selected samples of size 100

SMC-ABC: 2048 particles, 100 best distances selected

GLLiM: K = 20 (BIC), R = 1, d = 150, ` = 2, with bloc diagonal covariances, 5 blocs 30× 30

MSE over 100 simulated observations with the same true parameters θ1 = 0.6 and θ2 = 0.2

Procedure mean(θ1) mean(θ2) std(θ1) std(θ2) cor(θ1, θ2)
Average

Exact 0.5807 0.1960 0.0810 0.0813 0.4483
MSE

Semi-auto ABC 0.3402 0.0199 0.1521 0.1255 0.2235
Auto-cov Semi-auto 0.0048 0.0147 0.0012 0.0070 0.1212

Auto-cov Rejection ABC 0.0047 0.0145 0.0010 0.0070 0.1196
K = 20

GLLiM mixture 0.0340 0.0060 0.1223 0.0367 0.1691
GLLiM-E-ABC 0.0103 0.0066 0.0020 0.0037 0.0440

GLLiM-EV-ABC 0.0256 0.0065 0.0052 0.0035 0.0375*
GLLiM-L2-ABC 0.0095 0.0057 0.0016 0.0031 0.0470

GLLiM-MW2-ABC 0.0038 0.0041 0.0005 0.0013 0.0509
GLLiM-MW2-SMC 0.0032* 0.0035* 0.0003* 0.0010* 0.0513

ABC-DNN [Jiang et al. 2017] 0.0096 0.0089 0.0025 0.0026 0.0517

True posterior values computed numerically
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Multiple hyperboloid example

Parameter θ = (x, y), d = 10 dimensional observation y = (y1, . . . , yd) with a likelihood that
depends on two pairs m1 = (m1

1,m
1
2) and m2 = (m2

1,m
2
2), σ2 = 0.01 and ν = 3

fθ(y) =
1

2
Sd(y;Fm1 (θ)1Id, σ

2Id, ν) +
1

2
Sd(y;Fm2 (θ)1Id, σ

2Id, ν)

where Fm(θ) = (‖θ −m1‖2 − ‖θ −m2‖2), if m = (m1,m2) .

−→ Posterior distribution that concentrates around four hyperbolas True θ = (1.5, 1)
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Hyperboloid example : selected samples

GLLiM N = 105,K = 38 (BIC); Rejection and SMC ABC M = 106, ε = 0.1% quantile
(1000 values)
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A physical model inversion in planetary science

Goal : Study the textural properties of planetary materials

Origin : 1) Remote sensing (Mars surface), 2) Laboratory (analog materials)

Hapke’s radiative transfer model y = F (θ) + ε Measurements from 10 geometries

Determination of unknown parameters (ω, θ̄, b, c) via reflectance information (d = 10 geometries)
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Laboratory observations: Nontronite

GLLiM: K = 40 (BIC K = 39), N = 105; Rejection ABC: M = 105, ε is the 0.1% quantile

1 Nontronite BRDF y : 10 geometries measured (incidence θ0 =45, azimuth φ=0) at 2310nm

→ Two sets of parameters: (ω, θ, b, c) = (0.59, 0.15, 0.14, 0.06) and (0.59, 0.42, 0.14, 0.06)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w

N = 100   Bandwidth = 0.01598

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

theta

N = 100   Bandwidth = 0.07676

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

b

N = 100   Bandwidth = 0.0658

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

c

N = 100   Bandwidth = 0.05696

D
en

si
ty

Left: GLLiM-E-ABC, GLLiM-EV-ABC (dot) , GLLiM-L2-ABC, GLLiM-MW2-ABC, Semi-automatic ABC Right: signal reconstructions
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Conclusion

An extension of semi-automatic ABC with surrogate posteriors in place of summary
statistics, can be used as an alternative to discrepancy-based approaches

Requirements:

• A tractable, scalable model to learn the surrogates : e.g. GLLiM up to d = 100
and more with GLLiM-iid and Hybrid-GLLiM [Deleforge et al 2015]; can deal with
missing data; latent variables

• A metric between distributions: e.g. L2, MW2

First results and conclusions:

• No need to choose summary statistics

• A (restricted) convergence result to the true posterior

• Satisfying performance when posteriors are multimodal

• Surrogate posterior quality seems not critical

• Wasserstein-based distance seems more robust than L2

Florence Forbes GLLiM-ABC OBayes Sept 8, 2022 18 / 20



Perspectives

Short term improvements/ Future work:

• Other ABC scheme than rejection and SMC ABC (IS ABC, MCMC ABC, etc.)

• GLLiM use & implementation: higher computational cost, BNP variant to select K

• Other metrics between distributions

• Use in Bayesian Synthetic Likelihood context

• Sequential learning easy with GLLiM

• Other learning scheme than GLLiM (Mixture density networks, Invertible NN,
Normalizing flows)

Special thanks to: Guillaume Kon Kam King, Benoit Kugler and Sylvain Douté
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Thank you for your attention !

Paper: F. Forbes, H. Nguyen, T. Nguyen, J. Arbel, ABC with surrogate posteriors
https://hal.archives-ouvertes.fr/hal-03139256

Code available at https://github.com/Trung-TinNguyenDS/GLLiM-ABC
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Convergence of the ABC quasi-posterior: Rejection ABC

Goal: sample approximately from π(θ | y) ∝ π(θ)fθ(y) using D(y, z) (D(s(y), s(z)))

Rejection ABC: replace intractable fθ by: Lε(y, θ)=

∫
Y
1I{D(y,z)<ε}fθ(z) dz

−→ ABC quasi-posterior: πε(θ | y) ∝ π(θ)
∫
Y
1I{D(y,z)<ε}fθ(z) dz

Convergence of the quasi-posterior to π(θ | y) : intuition of the proof

when ε→ 0 then D(y, z)→ 0 so z→ y and {z ∈ Y, D(y, z) < ε} → {y}

π(θ)

∫
Y
1I{D(y,z)<ε}fθ(z) dz → π(θ)

∫
Y
1I{z=y}fθ(z) dz → π(θ)fθ(y)

Details in [Rubio &Johansen 2013, Prangle et al 2018, Berton et al 2019]
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The requirement {z ∈ Y, D(y, z) < ε} → {y} is too strong

• An equivalent formulation (Bayes’ theorem):

πε(θ | y) ∝
∫
Y

1I{D(y,z)≤ε} π(θ) fθ(z) dz ∝
∫
Y

1I{D(y,z)≤ε} π(θ | z) π(z) dz

replace D(y, z) by D(π(· | y), π(· | z)), D now a distance on densities

• A new quasi-posterior: qε(θ|y)∝
∫
Y

1I{D(π(·|y),π(·|z))≤ε}π(θ|z)π(z)dz

Result [FF et al, Theorem 1]: qε(· | y)→ π(· | y) in total variation when ε→ 0

Intuition of the proof:

when ε→ 0 then D(π(· | y), π(· | z))→ 0, then π(· | z)→ π(· | y) and∫
Y

1I{D(π(·|y),π(·|z))≤ε}π (θ | z)π (z) dz→
∫
Y

1I{π( ·|z)=π( ·|y)}π (θ | y)π (z) dz ∝ π (θ | y)

{z ∈ Y, D (π(·|y), π(·|z)) ≤ ε} → {z ∈ Y, π( ·|z) = π( ·|y)} is less demanding

In practice: replace the unknown π(·|y) by a tractable approximation
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Appendix: GLLiM model hierarchical definition

y =
K∑
k=1

1I(z=k)(A
′
kθ + b′k + E′k)

y∈Rd, θ∈R` with d>>`, 1I Indicator function, A′k d× ` matrix, b′k d-dim vector

E′k : observation noise in Rd and reconstruction error, Gaussian, centered, independent

on θ, y, and z

p(y|θ, z = k;φ′) = N (y; A′kθ + b′k,Σ
′
k)

• Affine transformations are local: mixture of K Gaussians

p(θ|z = k;φ′) = N (θ; c′k,Γ
′
k)

p(z = k;φ′) = π′k

• The set of all model parameters is:

φ′ = {c′k,Γ′k, π′k,A′k,b′k,Σ′k}Kk=1

possible constraint: Σ′k = σ2Id for k = 1 . . .K (isotropic) or bloc diagonal
(GLLIM-iid)
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Appendix : GLLiM Geometric Interpretation
This model induces a partition of R` into K regions Rk where the transformation τk is the
most probable.

If |Γ′1| = · · · = |Γ′K |: {Rk, k = 1 . . .K} define a Voronoi diagram of centroids
{c′k, k = 1 . . .K} (Mahalanobis distance ||.||Γ′ ).

pG(y|θ,φ′) =
K∑
k=1

η′k(θ)N (y; A′kθ + b′k,Σ
′
k) with η′k(θ) =

π′kN (θ; c′k,Γ
′
k)∑K

j=1 π
′
jN (θ; c′j ,Γ

′
j)

pG(θ|y,φ) =
K∑
k=1

ηk(y)N (θ; Aky + bk,Σk) with ηk(y) =
πkN (y; ck,Γk)∑K
j=1 πjN (y; cj ,Γj)
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Appendix : GLLiM link between φ and φ′

ck =A′kc
′
k + b′k

Γk =Σ′k + A′kΓ
′
kA
′>
k

Σk =
(
Γ
′−1
k + A

′>
k Σ

′−1
k A′k

)−1

Ak =ΣkA
′>
k Σ

′−1
k

bk =Σk

(
Γ
′−1
k c′k −A

′>
k Σ

′−1
k b′k

)
The number of parameters depends on the GLLiM variant but is in O(dK`)

If diagonal covariances Σ′k, the number of parameters is K − 1 +K(`+ `(`+ 1)/2 + d`+ 2d)

→ for K = 100, ` = 4 and d = 10 leads to 7499 parameters and to 61499 parameters if d = 100.
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Appendix: Distances between Gaussian mixtures

• Optimal transport-based distance [Delon & Desolneux 2020]

Quadratic cost Wasserstein distance between g1 =N (·;µ1,Σ1) and g2 =N (·;µ2,Σ2):

W2
2(g1, g2) = ‖µ1 − µ2‖22 + trace

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)

Mixture Wasserstein distance (MW2) between two Gaussian mixtures f1 =
∑K1
k=1 π1k g1k and

f2 =
∑K2
k=1 π2k g2k:

MW2
2(f1, f2) = min

w∈Π(π1,π2)

∑
k,l

wkl W2
2(g1k, g2l)

• L2 distance

L2 scalar product between two Gaussian distributions g1 and g2:

< g1, g2 >= N (µ1;µ2,Σ1 + Σ2)

L2 distance between two Gaussian mixtures f1 and f2:

L2
2(f1, f2) =

∑
k,l

π1kπ1l < g1k, g1l > +
∑
k,l

π2kπ2l < g2k, g2l > −2
∑
k,l

π1kπ2l < g1k, g2l >
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Appendix: Theorem 1 qε(·|y)→ π(·|y) in TV

Theorem

For every ε > 0, let Aε = {z ∈ Y : D (π (· | y) , π (· | z)) ≤ ε}

(A1) π (θ | ·) is continuous for all θ ∈ Θ, and supθ∈Θ π (θ | y) <∞;

(A2) There exists a γ > 0 such that supθ∈Θ supz∈Aγ π (θ | z) <∞;

(A3) D (·, ·) : Π×Π→ R+ is a metric on the functional class

Π = {π (· | y) : y ∈ Y} ;

(A4) D (π (· | y) , π (· | z)) is continuous, with respect to z.

Under (A1)–(A4), qε (· | y) converges in total variation to π (· | y), for
fixed y, as ε→ 0.
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Appendix: proof Theorem 1

qε (θ | y) =

∫
Y
Kε (z; y)π (θ | z) dz with Kε(z; y) ∝ 1IAε (z) π(z)

|qε (θ | y)− π (θ | y)| ≤
∫
Y
Kε (z; y) |π (θ | z)− π (θ | y)| dz

≤ sup
z∈Aε

|π (θ | z)− π (θ | y)| (Kε (·; y) is a pdf)

= |π (θ | zε)− π (θ | y)| for zε ∈ Aε (by (A1) and Aε compact)

For each ε > 0, zε ∈ Aε, limε→0 zε ∈ A0 =
⋂
ε∈Q+

Aε. Then,

A0 ={z∈Y : D(π(·|z), π(·|y))=0}={z∈Y : π(·|z)=π(·|y)} (continuity, equality property of
D)

Then ε→ 0 yields |π (θ | zε)− π (θ | y)| → |π (θ | y)− π (θ | y)| = 0 and hence
|qε (θ | y)− π (θ | y)| → 0, for each θ ∈ Θ.

By (A2), sup
θ∈Θ

qε (θ | y) = sup
θ∈Θ

∫
Y
Kε (z; y)π (θ | z) dz ≤ sup

θ∈Θ
sup

z∈Aγ
π (θ | z) <∞

for some γ, so that ε ≤ γ. Finally (bounded convergence theorem),

lim
ε→0

∫
Θ
|qε (θ | y)− π (θ | y)| dθ = lim

ε→0
‖qε (· | y)− π (· | y)‖1 = 0
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Appendix: Theorem 2
Theorem
Assume the following: X = Θ× Y is a compact set and

(B1) For joint density π, there exists Gπ a probability measure on Ψ such that, with gϕ ∈ HX ,

π(x) =

∫
Ψ
gϕ(x) Gπ(dϕ);

(B2) The true posterior density π(· | ·) is continuous both with respect to θ and y;

(B3) D (·, ·) : Π×Π→ R+ ∪ {0} is a metric on a functional class Π, which contains the class{
pK,N (· | y) : y ∈ Y,K ∈ N, N ∈ N

}
.

In particular, D
(
pK,N (· | y) , pK,N (· | z)

)
= 0, if and only if pK,N (· | y) = pK,N (· | z);

(B4) For every y ∈ Y, z 7→ D
(
pK,N (· | y) , pK,N (· | z)

)
is a continuous function on Y.

Then, under (B1)–(B4), the Hellinger distance DH

(
qK,Nε (· | y) , π (· | y)

)
converges to 0 in

some measure λ, with respect to y ∈ Y and in probability, with respect to the sample
{(θn,yn) , n ∈ [N ]}. That is, for any α > 0, β > 0, it holds that

lim
ε→0,K→∞,N→∞

Pr
(
λ
({

y ∈ Y : D2
H

(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
≤ α

)
= 1.
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Appendix: sketch of proof Theorem 2

qK,Nε (θ | y) =

∫
Y
KK,N
ε (z; y)π (θ | z) dz with KK,N

ε (z; y) ∝ 1I
A
K,N
ε,y

(z) π (z)

Relationship between Hellinger and L1 distances yields:

D2
H

(
qK,Nε (· | y) , π (· | y)

)
≤ 2DH

(
π(· | zK,Nε,y ), π (· | y)

)
where zK,Nε,y ∈ BK,Nε,y with BK,Nε,y = argmax

z∈AK,Nε,y
D1 (π (· | z) , π (· | y))

zK,N0,y = limε→0 zK,Nε,y and zK,N0,y ∈ AK,N0,y =
{
z ∈ Y : pK,N (· | z) = pK,N (· | y)

}
Triangle inequality for DH :

DH

(
π
(
· | zK,Nε,y

)
, π (· | y)

)
≤ DH

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
+DH

(
π(· | zK,N0,y ), pK,N (· | y)

)
+DH

(
pK,N (· | y) , π (· | y)

)
First term in the rhs: goes to 0 as ε goes to 0 independently on K,N

Two other terms are similar: use [Rakhlin et al 2005, Corol. 2.2]
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Bivariate Beta model [Crackel & Flegal 2017]: z> = (z1, z2), θ = (θ1 . . . θ5)

z1 = v1/(1 + v1) and z2 = v2/(1 + v2) with

v1 = (u1 + u3)/(u5 + u4) and v2 = (u2 + u4)/(u5 + u3), where ui ∼ Gamma(θi, 1)

Likelihood for z not available in closed form

GLLiM: K = 100 (set manually) for R = 100 i.i.d. observations (d = 2), ` = 5, ×N = 105

ABC: ε is set to the 0.05% quantile leading to selected samples of size 50,

Empirical parameter means, and RMSE averaged over 10 repetitions with observed data
generated with θ = (1, 1, 1, 1, 1).

Procedure θ̄1 θ̄2 θ̄3 θ̄4 θ̄5 R(θ1) R(θ2) R(θ3) R(θ4) R(θ5)
GLLiM mixture 2.510 2.546 2.714 2.630 2.591 2.145 2.291 2.201 2.277 2.056
GLLiM-E-ABC 1.439 1.051 0.914 1.095 1.264 0.952 0.791 0.483 0.629 0.510

GLLiM-EV-ABC 1.444 1.037 0.916 1.153 1.205 1.003 0.751 0.556 0.596 0.521
GLLiM-L2-ABC 1.860 2.301 2.430 2.136 2.620 1.268 1.859 2.008 1.536 1.966

GLLiM-MW2-ABC 1.330 1.000 0.8465 1.056 1.159 0.836 0.781 0.458 0.558 0.448
Best results using data discrepancies as reported in [Nguyen et al 2020]

R = 100 1.275 1.176 0.751 0.830 1.237 0.834 0.593 0.459 0.219 0.409
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Bivariate Beta model: R = 100 i.i.d. observations

Marginal ABC posteriors for each of the 5 parameters
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GLLiM-E-ABC (red), GLLiM-EV-ABC (dotted red), GLLiM-MW2-ABC (black), GLLiM-L2-ABC
(blue), SA-ABC on 14 quantiles (green), GLLiM mixture (dotted green)
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Bivariate Beta model: R = 100 i.i.d. observations, SMC-ABC and WABC

Marginal ABC posteriors for each of the 5 parameters
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Moving average of order 2: y′t = zt + θ1zt−1 + θ2zt−2, t = 1 . . . 150

N = 105 series of length 150, the series to be inverted is simulated with θ1 = 0.6 and θ2 = 0.2.

Rejection ABC: ε is set to the 0.1% quantile leading to selected samples of size 100

GLLiM: K = 20, R = 1, d = 150, ` = 2, with bloc diagonal covariances, 5 blocs 30× 30
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Appendix: other illustration, 10-variate Student likelihood symmetric in µ

fθ(z) = Sd(z;µ21d, σ
2Id, ν)

d = 10, mean = (µ2 . . . µ2)T , isotropic scale matrix= σ2Id (σ2 = 2), dof (tail) ν = 2.1

Observation y: true µ=1

Setting: GLLiM:K=10, N=105; Rejection ABC:M=105, ε=0.1% (100 values)

True symmetric posterior π(µ|y)

GLLiM-E-ABC
GLLiM-EV-ABC (dot)

Semi-automatic ABC

GLLiM-L2-ABC
GLLiM-MW2-ABC
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Appendix: other illustration, sum of MA(1) processes

y′t = zt + ρzt−1

y′′t = z′t − ρz′t−1

yt = y′t + y′′t

{zt} and {z′t} are i.i.d. standard normal realizations and ρ is an unknown scalar parameter

→ y = (y1, . . . , yd)> ∼ N (0d, 2(ρ2 + 1)Id)

Observation y : d = 10, true ρ = 1

Setting: GLLiM: K = 20, N = 105; Rejection ABC: M = 105, ε = 0.1% (100 selected values)

True symmetric posterior π(µ|y)

GLLiM-E-ABC
GLLiM-EV-ABC (dot)

Semi-automatic ABC

GLLiM-L2-ABC
GLLiM-MW2-ABC
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Appendix: other illustration, sum of MA(2)

y′t = zt + θ1zt−1 + θ2zt−2

y′′t = z′t − θ1z
′
t−1 + θ2z

′
t−2

yt = y′t + y′′t ,

K = 80 and N =M = 105, ε to the 1% distance quantile (samples of of size 1000)

An observation of size d = 10 is simulated from θ1 = 1 and θ2 = 0.6

−2 −1 0 1 2

0.
1

0.
2

0.
3

0.
4

theta1

N = 1000   Bandwidth = 0.2386

D
en

si
ty

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

theta2

N = 1000   Bandwidth = 0.07752

D
en

si
ty

Florence Forbes GLLiM-ABC OBayes Sept 8, 2022 37 / 20



Appendix: synthetic data from the Hapke model

ω

θ̄

b

c

(a) 1% (1000 samples) (b) 0.1% (100 samples) (c) 0.05% (50 samples)
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Computation times (MacBook Pro 8 cores, 2.4 GHz)

Exp. ABC ` d K N M R BIC GLLiM Dist. ABC Package
Beta Rej-ABC

G-E-ABC 5 2 100 105 105 100 - 11h13m 3m03s 0.28s abc
G-EV-ABC 5 2 100 105 105 100 - 11h13m 3m03s 0.51s abc
G-L2-ABC 5 2 100 105 105 100 - 11h13m 19m02s 0.01s abc

G-MW2-ABC 5 2 100 105 105 100 - 11h13m 19m02s 0.01s abc
SMC-ABC

WABC 5 2 - - 106 100 - - - 31m05s winference
G-MW2-SMC 5 2 100 105 106 100 - 11h13m - 34m53s winference

G-L2-SMC 5 2 100 105 106 100 - 11h13m - 2h34m winference
MA(2) Rej-ABC

SA 2 150 - - 105 1 - - - 1m25s abctools
G-E-ABC 2 30 20 105 105 5 5h46m 9m23s 50s 0.12s abc

G-EV-ABC 2 30 20 105 105 5 5h46m 9m23s 50s 0.20s abc
G-L2-ABc 2 30 20 105 105 5 5h46m 9m23s 1m03s 0.01s abc

G-MW2-ABC 2 30 20 105 105 5 5h46m 9m23s 1m03s 0.01s abc
SMC-ABC

WABC 2 30 - - 105 5 - - - 10m29s winference
G-MW2-SMC 2 30 20 105 105 5 5h46m 9m23s - 11m08s winference

G-L2-SMC 2 30 20 105 105 5 5h46m 9m23s - 8m43s winference
Hyperb. Rej-ABC

SA 2 10 - - 106 - - - - 13s abctools
G-E-ABC 2 10 38 105 106 - 1h43m 4m47s 25s 0.9s abc

G-EV-ABC 2 10 38 105 106 - 1h43m 4m47s 11m28s 1.8s abc
G-L2-ABC 2 10 38 105 106 - 1h43m 4m47s 4h18m 0.1s abc

G-MW2-ABC 2 10 38 105 106 - 1h43m 4m47s 4h18m 0.1s abc
SMC-ABC

G-MW2-SMC 2 10 38 105 106 - 1h43m 4m47s - 1h10m winference
Hapke Rej-ABC

SA 4 10 - - 105 - - - - 1.4s abctools
G-E-ABC 4 10 40 105 105 - 2h59s 21m30s 3.3s 0.2s abc

G-EV-ABC 4 10 40 105 105 - 2h59s 21m30s 79s 0.3s abc
G-MW2-ABC 4 10 40 105 105 - 2h59s 21m30s 40m10s 0.01s abc

Normal SMC-ABC
WABC 2 2 - - 106 100 - - - 50m winference

G-L2-SMC 2 2 1 105 106 100 - - - 2m32s winference
G-MW2-SMC 2 2 1 105 106 100 - - - 1m30s winference
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